NAVAL POSTGRADUATE SCHOOL
Monterey, California .

THESIS

AN ALGORITHM FOR ENUMERATING THE
NEAR-MINIMUM WEIGHT S-T CUTS OF A GRAPH

by
Ahmet Balcioglu
December 2000
Thesis Co-Advisors: R. Kevin Wood

Craig W. Rasmussen
Second Reader: Gerald G. Brown

Approved for public release; distribution is unlimited.

20010307 140

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-
0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 2000 Master’s Thesis
4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS

An Algorithm for Enumerating The Near-Minimum Weight s-z Cuts of a Graph

6. AUTHOR(S) Balcioglu, Ahmet

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) . PERFORMING ORGANIZATION
Naval Postgraduate School PORT NUMBER
Monterey, CA 93943-5000 L

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)] 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited. '

13. ABSTRACT (maximum 200 words)

We provide an algorithm for enumerating near-minimum weight s-t cuts in directed and
undirected graphs, with applications to network interdiction and network reliability. “Near-minimum”
means within a factor of 1+€ of the minimum for some € = 0. The algorithm is based on recursive
inclusion and exclusion of edges in locally minimum-weight cuts identified with a maximum flow
algorithm. We prove a polynomial-time complexity result when € = 0, and for € > 0 we demonstrate
good empirical efficiency. The algorithm is programmed in Java, run on a 733 MHz Pentium III
computer with 128 megabytes of memory, and tested on a number of graphs. For example, all 274,550
near-minimum cuts within 10% of the minimum weight can be obtained in 74 seconds for a 627 vertex
2,450 edge unweighted graph. All 20,806 near-minimum cuts within 20% of minimum can be
enumerated in 61 seconds on the same graph with weights being uniformly distributed integers in the
range [1,10].

14. SUBJECT TERMS Near-Minimum Cuts, Cut Enumeration, Minimum Cuts, Network 15. NUMBER OF
Interdiction PAGES
64

16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF | OF ABSTRACT
REPORT PAGE ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited.
AN ALGORITHM FOR ENUMERATING THE NEAR-MINIMUM WEIGHT
S-T CUTS OF A GRAPH
Ahmet Balcioglu

First Lieutenant, Turkish Army
B.S., Turkish Army Military Academy, 1993

Submitted in partial fulfillment of the
requirements for the degree of
MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
December 2000

Author: /4 ’é\/) / Sl

Ahmet Balcmglu

% 7 /
Approved by: . 27

V7
R. Kevin Wood, Thesis Co- Adwsor

Craig W. Ra; mussen, Thesis Co-Advisor

Z TL

///ralﬂ’é. Bro econd Reader
N

J4mes W) Eagle, Chairman
€partment of Operations Research

111

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

We provide an algorithm for enumerating near-minimum weight s-t cuts in
directed and undirected graphs, with applications to network interdiction and network
reliability. “Near-minimum” means within a factor of 14+¢ of the minimum for some
€ 2 0. The algorithm is based on recursive inclusion and exclusion of edges in locally
minimum-weight cuts identified with a maximum flow algorithm. We prove a
polynomial-time complexity result when € = 0, and for € > O we demonstrate good
empirical efficiency. The algorithm is programmed in Java, run on a 733 MHz Pentium
III computer with 128 megabytes of memory, and tested on a number of graphs. For
example, all 274,550 near-minimum cuts within 10% of the minimum weight can be
obtained in 74 seconds for a 627 vertex 2,450 edge unweighted graph. All 20,806 near-
minimum cuts within 20% of minimum can be enumerated in 61 seconds on the same

graph with weights being uniformly distributed integers in the range [1,10].

THIS PAGE INTENTIONALLY LEFT BL ANK

TABLE OF CONTENTS

I. INTRODUCTION 1
A. NEAR-MINIMUM CUTS AND THEIR APPLICATIONScccccovirnnne. 1

B. BACKGROUNDoooiiiiiiitiietcieecciteteieest et sre e sb e 4

C. THESIS OUTLINEooiiiriier ettt e 8

II. DEFINITIONS AND NOTATION 9
III. THEORETICAL RESULTS 11
A. BASIC ALGORITHMS. ..ottt 11

B. AN IMPLEMENTABLE ALGORITHMcccccceciiiiiiiienereeieee 16

C. CORRECTNESS OF THE ALGORITHM.......ccccconiiiiiiiiee 19

D. COMPLEXITY OF THE ALGORITHMccccocooviiiiiiiiericieieecee 21

1. Complexity Analysis of Minimum-Cut Enumeration...........cccecevevevenennes 21

2. Complexity Analysis of Near-Minimum Cut Enumeration.................... 23

IV. COMPUTATIONAL RESULTS 25
A. IMPLEMENTATION DETAILScccoooiiiiiiiinienereee e 25

1. Efficient Implementation of Algorithm B.........c.ccooiiiniiin. 25

2. Problem Generatorsc.ccceeeieeeriieeeeiierenreeeeneeeesneeesnesessaeesssceseesanes 27

B. THE EXPERIMENTSooiiiiiecece ettt 30

1. Experiments on Unweighted Graphsccccceeeiviiiinininiinniecnes 30

2. Experiments on Weighted Graphsccoccooiiiin 33

V. CONCLUSIONS AND RECOMMEDATIONS 37
LIST OF REFERENCES 41
INITIAL DISTRIBUTION LIST 45

vii

THIS PAGE INTENTIONALLY LEFT BLANK

viil

Figure 1.

Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Figure 7.

LIST OF FIGURES

Algorithm Al: A generic partitioning algorithm for enumerating all near-

TNINIMUN S-7 CULS c..eenienierentinieetesiteecs i csii e eesrsesas e res s st e be s n e rn s 12
Sample Graph. ..o 13
Enumeration Tree for the Graph of Figure 2.........ccooviiiiiiiiniinnn, 14
Algorithm A2: A “relaxed” version of Algorithm Al. ... 15
Algorithm B: An approximate implementation of Algorithm A2............. 17
Quasi-inclusion and -exclusion of an edge from a cut.ccccceeeinennin, 18
An unweighted directed grid graph generated by GGFGEN 28

ix

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

LIST OF TABLES

Problem groups for GGF.......c.ccciviiiiiiinie 28
Problem types for DBLCYCLEGEN and AD..ccccoeviiiniininincienne, 29

Run times (in seconds) for Algorihtm B solving AMCP-st on unweighted
instances of GGF-square and GGF-long graphsc.cccoevien 31

Run times (in seconds) for ANMCP-st solutions of Algorithm B on
unweightgd GGF-square instances with € = 0.05, 0.10, 0.15.................... 32

Computational results on unweighted, acyclic dense (AD) graphs with
various threshold 1eVels €cccooviiiiiiiiiiiiis 33

Computational results for minimum-cut enumeration (AMCP-st) on
weighted, GGF-square problems..........ccocviivineiiierecnieeeiecre e 33

Computational results for near-minimum cut enumeration (ANMCP-st) on
weighted GGF-square problems..........ccooviiiiiniinniees 34

Computational results for near-minimum cut enumeration (ANMCP-st) on
weighted DBLCYC-I problems.. ..o, 35

xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

EXECUTIVE SUMMARY

We consider the problem of enumerating all near-minimum weight s-¢ cuts in a
directed graph G=(V,E). A minimal s-¢ cut is a minimal set of edges whose removal
results in disconnection of the “source vertex” s and “sink vertex” ¢. A cut is “near

minimum” if its weight is within a multiplicative factor of 1+¢ times the minimum cut

weight for some € 2 0.

This thesis is motivated by network interdiction problems in which a decision
maker selects edges to interdict based on a primary criterion, e.g., resource consumption,
and some secondary criteria, e.g., collateral damage, exposure to enemy fire, etc.
However, the results may also be useful for evaluating graph reliability and other
problems.

Our enumeration algorithm is based on a recursive “inclusion-exclusion” method.
The algorithm identifies a (minimal) minimum-weight s-z cut by exploiting the duality
between max flow and minimum cut, and then systematically partitions the space of
minimal (and possibly some non-minimal) cuts by attempting to include and exclude the
edges in that cut. The quasi-exclusion of an edge is accomplished by setting its weight to
infinity, so that the edge will not be identified as a part of any finite-weight cut in
subsequent solutions. We quasi-include an edge (u,v) by implicitly adding the infinite
weight edges (s,u) and (v,7) to the graph so that every finite-weight cut in G must now
contain («,v). The weight of the locally minimum cut is monotonically non-decreasing,

so the recursive algorithm can backtrack as soon as the weight of a locally minimum cut

exceeds (1+€)Wyy, where Wiy is the minimum weight of a cut in G.

xiii

The quasi-inclusion technique can, unfortunately, lead to enumeration of non-
minimal cuts, i.e., cuts that contain more edges than necessary to disconnect s from 7. We
identify non-minimal cuts by performing two searches beginning from s and ¢ and not
traversing cut edges: If any endpoint of a cut edge is not reached, then the cut is non-
minimal. The algorithm simply ignores non-minimal cuts and continues.

The algorithm is correct because the sequence of weights of (locally) minimum
cuts is monotonic non-decreasing as we descend along any path in the inclusion-
exclusion enumeration tree and because we never eliminate or duplicate any minimal,
near-minimum cut during enumeration.

The complexity of the algorithm for finding only minimum cuts (when € = 0) is
O(fAVLIED+IVIENC,(G)l) where f(IVIIEl) is the complexity of solving a
maximum flow problem on G = (V,E) from scratch and Co(G) is the set of minimum cuts
in G. Unfortunately, this polynomial complexity result is not valid for near-minimum cut
enumeration, because we cannot properly bound the number of non-minimal cuts
identified during the enumeration. Thus the worst-case complexity of the algorithm for
near-minimum cut enumeration remains unknown when € > 0.

The enumeration algorithm is implemented in Java (JDK 1.2.2) and tested using a
733 MHz Pentium III computer with 128 megabytes of RAM operating under Microsoft
Windows 98 SE. For example, in a 25 by 25 grid graph with 627 vertices, 2,450 edges
and unit weights, all 24 minimum-weight cuts (€ = 0) are enumerated in 0.22 seconds, all

1,128 cuts with € = 0.05 are enumerated in 3.91 seconds, and all 3,621,978 cuts with

€ = 0.15 are enumerated in 973.29 seconds.

X1V

ACKNOWLEDGMENTS

I would like to acknowledge my advisors Prof. R. Kevin Wood and Prof. Craig
W. Rasmussen for their counsel and patience throughout the research and writing of this
thesis. Their wisdom and the guidance significantly enhanced my education at the Naval
Postgraduate School.

I would also like to acknowledge Prof. Gerald G. Brown, Prof. Richard
Rosenthal, Prof. Gordon H. Bradley, and the rest of the of the Operations Research
lecturers for the inspirational classes that helped us all to think beyond the state of the art.

Finally, I would like to thank my wife Hacer and my daughter Ecem for the love
and meaning they have brought to my life. I could not have made it through school

without their understanding and perseverance.

Excerpt from Walden
I went to the woods because I wished to live deliberately, to front only the essential facts of life, and see if 1
could not learn what it had to teach, and not, when I came to die, discover that I had not lived. I did not wish
to live what was not life, living is so dear, nor did I wish to practice resignation, unless it was quite necessary.
I wanted to live deep and suck all the marrow of life, to live so sturdily and Spartan-like as to put to rout all
that was not life, to cut a broad swath and shave close, to drive life into a corner, and reduce it to its lowest
terms, and if it proved to be mean, why then to get the whole and genuine meanness of it, and publish its
meanness to the world; or if it were sublime, to know it by experience, and be able to give a true account of it
in my next excursion. For most men, it appears to me, are in a strange uncertainty about it, whether it is of the
devil or of God, and have somewhat hastily concluded that it is the chief end of man here to "glorify God and
enjoy him forever.”

- Henry David Thoreau

XV

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

I INTRODUCTION

Enumeration of various types of minimal cuts in graphs has been well studied,
and both the operations research and reliability engineering communities have presented
efficient enumeration algorithms. In this thesis, we deal with a particular type of cut that
has not received the same attention as other types, specifically, near-minimum-weight
minimal s- cuts.

We develop and implement an empirically efficient algorithm to enumerate all
near-minimum-weight minimal s-z cuts in a directed or undirected graph. (Note: “cuts”
will be used synonymously with “minimal cuts” from here on unless stated otherwise.
Also, note that “minimal” refers to the set-theoretic property that a set of edges that

disconnects all s-¢ paths is minimal, and “minimum” refers to the total weight of a cut.)

A. NEAR-MINIMUM CUTS AND THEIR APPLICATIONS

The network to be considered, primarily, is a directed graph G = (V, E), with
positive edge weights and two special, distinct vertices, a source s and a sink . An s-f cut
is a minimal set of edges whose removal breaks all directed paths from s to . We define
the problem of finding an s-¢ cut of minimum weight among all possible s-f cuts in G as
the minimum s-t cut problem (MCP-st). We also define two extensions of MCP-st, the
problem of enumerating all minimum s-t cuts in G (AMCP-st) and the problem of
enumerating all near-minimum weight s-t cuts (ANMCP-st) whose weight is within a
factor of 1+€ of the minimum s-f cut weight in the given network. The last problem is the

focus of this thesis.

The analogs of AMCP-st and ANMCP-st in undirected weighted graphs G are
easily solved using the techniques we develop, also. An s-f cut in an undirected network
is simply a minimal set of edges C whose deletion breaks all (undirected) s-# paths. If we
replace each undirected edge by two directed, anti-parallel edges, each with the weight of
the original undirected edge—this is a standard transformation, of course—each s-f cut in
the new directed graph corresponds in a one-to-one fashion with an s-¢ cut in the original
graph. Thus, an efficient technique to enumerate s-¢ cuts in a directed graphs leads to an
efficient technique to enumerate s-¢ cuts in an undirected graph.

Another type of cut can be defined in an undirected graph G which we call a
general cut; this is simply any minimal disconnecting set of edges in G. The problems of
finding and enumerating general cuts are somewhat related to our problems and will be
discussed briefly, so we make these definitions: (a) The problem of finding a minimum-
weight general cut is the general min-cut problem (MCP), (b) the problem of
enumerating all minimum-weight general cuts is the general all min-cuts problem
(AMCP), and (c) the problem of enumerating all near-minimum-weight general cuts is
the general all near-min-cuts problem (ANMCP).

In the remainder of this thesis, we will use the following notation and define more

as needed. For s-t cuts, we denote a minimum cut as Cp and a near-minimum cut asC,
with their respective cardinalities ICol and IC, 1. We also let Co(G) and C,(G)denote the

set of minimum and near-minimum cuts in G, respectively.
One application of ANMCP-st arises in network interdiction problems (Wood

1993). A network user (adversary) attempts to “communicate” between source s and

sink # in a directed network while the interdictor (decision maker), using limited
2

resources (aerial sorties, cruise missiles, etc.), tries to break all paths between s and . By
treating the amount of resource required to destroy an edge as its weight, a decision
maker can use a maximum flow minimum-cut algorithm to identify a minimum-weight
cut, i.e., minimum-resource cut, to disrupt the communication between s and t.
(Hereafter, following common practice, the term max is substituted for maximum and
min for minimum.)

There may be secondary criteria that the decision maker wishes to consider when
determining the best interdiction plan, e.g., collateral damage, risk to attacking forces,
etc. In this case, near-optimal solutions with respect to the primary criterion can be
obtained by solving ANMCP-st; then those solutions can be evaluated against the
secondary criteria for suitability. One of those near-optimal “good solutions” might
produce more desirable results than an “optimal solution” obtained by solving MCP-st or
AMCP-st (Boyle 1998, Gibbons 2000.)

Another application of ANMCP-st arises in assessing the reliability and
connectivity of networks (Colbourn 1987, Provan and Ball 1983). Consider a
probabilistic graph G with two specified vertices s and 7, in which each edge fajls
independently with probability p. The s-t connectedness (or two-terminal reliability in

the undirected case) of the graph is the probability that there exists a working s-¢ path

\El-k

73]
in G. This probability can be computed as 1— 2 A p"(l— p) -, where ky, is the

k=kpin
cardinality of the minimum cut and A, is the number of edge sets of cardinality Xk whose

deletion disconnects s from . When p is sufficiently small, this value can be

approximated by 1-4,__p* (1— p)® %= which equals 1-1Co(G)| p'“'(1- p)’*"“' when

min

3

edge weights are all defined to be 1 (i.e., weight of a cut corresponds to the number of
edges in the cut) (Colbourn 1987, pp. 53-54). This approximation (which is also an upper
bound) can be made more accurate by including terms from the original formula for

k. <k<k’, where k" is “not very large.” (Intuitively, only cuts with small cardinality

mi

can have a significant probability of failing, and thus disconnecting s and #; Karger 1999)

When k = kpin, 4, counts only minimal cuts, but when k > kmin, NOn-minimal cuts must

be counted in addition to minimal ones. However, non-minimal cuts of cardinality k are
easily counted given the minimal cuts of cardinality k-1, k-2, etc. Thus, enumeration of
minimum and near-minimum cuts is essential for accurately estimating s-¢ connectedness

of G.

B. BACKGROUND

As a result of their widespread applicability in network reliability and in many
other combinatorial problems (Picard and Queyranne 1982), AMCP, AMCP-st and the
problem of enumerating all minimal s-¢ cuts have been intensively studied, but ANMCP-
st has not received the same attention.

One brute-force approach for ANMCP-st would be to find all minimal s-f cuts and
then eliminate the ones that are not minimum or near-minimum. All minimal s-f cuts of a
graph can be enumerated in time that is polynomial in the size of G and in the number of
cuts enumerated (Tsukiyama et al., 1980, Abel and Bicker 1982, Karzanov and Timofeev

1986, Shier and Whited 1986, Sung and Yoo 1992, Ahmad 1990, Prasad et al., 1992,

Nahman 1995, Patvardhan et al., 1995 and Fard and Lee 1999). Unfortunately, this-

cannot lead to an efficient general approach for AMCP-st or ANMCP-st because the

number of cuts in a graph may be exponential in the size of that graph while the number
of minimum and near-minimum cuts may be polynomial. For instance, if G is a complete
directed graph with edge weights of 1, the total number of minimal cuts is 22 the
number of minimum cuts is 2 and the number of (minimal) cuts of the next largest size is
2(1V1-2).

All minimum s-¢ cuts (AMCP-st) can be enumerated efficiently. Picard and
Queyranne (1980) present a characterization of all minimum s-¢ cuts to solve AMCP-st
by exploiting “max flow-min cut” duality. They find a maximum s-¢ flow in G, define a
binary relation. (Picard and Queyranne 1980, Theorem 1) on the vertices of the resulting
“residual graph” and show how to find all minimum s-¢ cuts by efficiently generating all
closures of this graph. Gusfield and Naor (1993) and Curet (1999) give efficient
algorithms for AMCP-st using this idea. Ball and Provan (1983) identify all “s-directed
minimum cuts” by solving AMCP-st between s and i, for each i € V - {s}, and upon
identification of the solution to AMCP-si, they collapse vertices s and i into a single
vertex s to find the remaining s-directed cuts (which break all paths between s and
T =V — {s}). Provan and Shier (1996) define a general paradigm to solve AMCP-st by
extending the Picard and Queyranne approach. Their paradigm lists s-¢ cuts in O(IV1)
time per cut in directed and undirected graphs. They also show that the algorithms of
Picard and Queyranne (1980) and Ball and Provan (1983) may not be polynomial in the
case of directed graphs. Kanevsky (1993) uses Provan and Shier's paradigm to find all
minimum-size “separating vertex sets” instead of edge sets.

Before going any further in discussing algorithms to solve ANMCP and ANMCP-

st efficiently, we must define some notation. We let n = IVl and m = |E| from here on.
5

Ramanathan and Colbourn (1987) solve ANMCP by giving an efficient algorithm to

count “almost-minimum cardinality s-¢ cuts.” They bound the number of cuts enumerated
by O(m*n**?), where k = 1 is a constant that defermines the cardinality of almost-
minimum cut together with the cardinality of the minimum cut. This algorithm is
applicable only to undirected graphs and polynomial complexity is guaranteed only if & is

fixed.

Karger and Stein (1996) introduce a randomized algorithm for solving ANMCP
by using edge contraction (identify an edge that does not cross the minimum cut and
merge its endpoints into a single new vertex without losing the minimum cut). Their
algorithm enumerates all general cuts whose weight is within a factor o of the minimum
cut in O(n** log® n) expected time with high probability. They also derive an upper

bound O(n**)on the number of cuts. Karger (2000) later improves this upper bound to

O(nu“}). But this is a Monte Carlo algorithm and gives the right answer with high
probability, not with certainty. Nagamochi et al. (1997) give a deterministic algorithm
similar to that of Karger and Stein (1996) for solving ANMCP. They‘ show that all
general cuts of weight less than k times the general minimum cut weight can be
enumerated in O(m’n+n*m) time. Unfortunately, both algorithms apply only to
undirected graphs and, furthermore, they are unlikely to be extendable to enumeration
problems involving s-7 cuts (Karger and Stein 1996).

Vazirani and Yannakakis (1992) propose a polynomial-time algorithm for solving
ANMCP and ANMCP-st in a directed or undirected graph with weighted or unweighted

edges. In their extended abstract, they give an algorithm to find all general cuts and all

6

s-t cuts in ascending order with respect to their weight. They show that the k-th minimum
weight s-t cuts in this order can be enumerated using O(n*)maximum flow

computations, for any fixed k. They list the s-¢ cuts in increasing order of the weight by
using an idea similar to that of Picard and Queyranne (1980) (shrinking the strongly

connected components to single vertices in the residual graph) and provide a bound of
O(n*™) for the number of kth minimum weight cuts in an undirected graph. The

technique of Vazirani and Yannakakis may be useful, but it is not as easy to describe as
ours and is based on an unproven assertion. In particular, they state: “Given a partially
specified cut, we can find with one max flow computation a minimum weight s-¢ cut
consistent with it.” We leave it to others to determine the validity of their approach.

Boyle’s algorithm for solving constrained network-interdiction problems on
undirected graphs (Boyle 1999) can be modified to enumerate near-minimum cuts. But
the algorithm is only applicable to planar graphs and, because the technique is based on
the planar dual of a graph, no generalization to non-planar graphs seems likely. (A
generalization to directed planar graphs might be possible.) Gibbons (2000) gives an
algorithm for solving ANMCP-st in a directed and undirected graph, but he may
enumerate a cut more than once. Empirically, the running time and number of cuts
enumerated grow rapidly as the size of graph and € increase.

The current approaches for solving ANMCP-st are either computationally
prohibitive (Gibbons 2000), not truly efficient (Ramanathan and Colbourn 1987), or
restricted to specific types of graphs, e.g., undirected (Ramanathan and Colbourn 1987),
planar (Boyle 1999). There are some efficient techniques to enumerate all near-minimum

general cuts, i.e., to solve ANMCP (Karger 2000, Nagamochi et al. 1997), but these do
7

not seem to be extendable to ANMCP-st. Only the algorithm due to Vazirani and
Yannakakis (1992) may be efficient for solving ANMCP-st (and ANMCP), but their
technique is complicated and based on an unproven assertion. Therefore, we propose a
new algorithm to solve all instances of ANMCP-st efficiently, and provide computational
results for a simple implementation of the algorithm.

Our algorithm for solving ANMCP-st first identifies 2 minimum weight s-¢ cut by
solving a maximum flow problem. Given a minimum cut, the algorithm recursively
partitions the space of possible cuts by forcing inclusion and exclusion of cut edges from
subsequent cuts (which are possible solutions) to enumerate all possible near-minimum
cuts in G. An edge (u,v) is excluded from a cut by setting its weight to infinity. Edge
inclusion is accomplished by implicitly adding two infinite-weight edges to G. One edge
connects s to u and the other connects v to ¢ so that they create a simple path from s to ¢
via that edge. The technique for including edges, unfortunately, can cause the algorithm

to identify non-minimal cuts, i.e., cuts containing a minimal cut as a subset.

C. THESIS OUTLINE

The remainder of this thesis is organized as follows: Chapter II introduces more
definitions and notation. In Chapter III, we explain our algorithm theoretically and prove
its correctness. Chapter IV contains computational results from testing the algorithm on

different types of graphs with different sizes. Finally, Chapter V summarizes our findings

and gives conclusions.

II. DEFINITIONS AND NOTATION

Let G = (V, E) be an edge-weighted directed graph with a finite set V of vertices
and a set E < VXV of edges. A directed edge ¢ = (1,v) is an incoming edge to v and an
outgoing edge from u. An undirected graph is defined similarly, except that its edges are
unordered pairs from V (with no orientation). We may use e or (u,v) as shorthand for
e = (u,v). We denote the number of vertices by n = IVl and the number of edges by m =
IEl. We distinguish two separate vertices s and ¢ in V as the source and sink, respectively.
Edge weights are specified by the weight function w: E — Z*, where Z" is the set of non-

negative integers. We denote the weight of an edge as w, or w(u,v) and the vector of

edge weightsas w = (w, ,w, ,...,w,).

An s-t cut in G is a set of edges whose removal disconnects s from ¢ in G, i.e.,
breaks all (directed) paths from s to 2. An s-7 cut is minimal if it does not contain a subset
which itself is an s- cut of the graph. We will use “s-f cut” and “cut” interchangeably for
“minimal s-f cut” in the remainder of the thesis; a cut is denoted by C. (Note: Whenever

we need to mention cuts other than s-¢ cuts, we may refer such cuts as simply general

cuts.) The weight w(C) of an s-t cut is the sum of the edge weights in the cut, that is,

w(C) = Zee We- A minimum cut (min cut) is an s-f cut whose weight is minimum among

all s-¢ cuts; such a cut is denoted Cy. A near-minimum cut (near-min cut) is an s-¢ cut

whose weight is at most 1 + € times the minimum cut weight for a given € 2 0; such a cut

is denoted C.. We use Co(G) to denote the set of minimum cuts, and C,(G) to denote

the set of near-min cuts.

A flow in a directed G is a function f : E — Z, where f(e) < w(e) for each edge

ec€ E, and z(vu)eEf(u,v) = Z(Vu)eEf(v,u) for all u € V— {s,t}. The value of flow from

stotisF= zuev f(s,u). A flow F* with the maximum value among all flows is called

maximum flow between s and ¢. In the maximum flow problem we wish to find a flow of
maximum value from s to t.

As a result of the max flow min-cut theorem and its proof (e.g., Ahuja et al
pp-184-185), we know that w(Co) = F*, where Co € Co(G). Given any maximum flow F*
together with f¥(e) for every e € E, we can identify a minimum cut Co in O(m) time.

In describing our algorithm, we use Wygy and Wyew to denote the weight of
minimum-cut in G and the weight of a newly identified cut (which will be a min cut in a
modified graph), respectively.

A rooted tree, T, is a free tree (a connected, acyclic, undirected graph) in which
one node (called the “root” and denoted by r) is distinguished from others. A node i mT
with root r is said to be in level (depth) [if the length of unique path P; = (7, vi, v2, .., Vi1
i) from root r to node i is k. Every node along path P; (except node i) is called a (proper)
ancestor of i, and if i is ancestor of j, then j is descendant of i. Let & and i be the last two
nodes of P;, then 4 is the parent of i and i is a child of h. Nodes with the same parents are
called siblings. A rooted tree, and enumeration tree, will be used to describe the

recursive partitioning process that we use to solve ANMCP-st.

10

III. THEORETICAL RESULTS

In this chapter, we introduce our algorithm (Algorithm B) for solving ANMCP-st
and AMCP-st. We first describe the generic partitioning algorithm, Algorithm Al, from
Gibbons (2000) as the basic approach. This is modified into Algorithm A2, which is then

approximately implemented as Algorithm B.

A. BASIC ALGORITHMS

Algorithm A1l (Figure 1) provides a basic framework for enumerating near-min
s-t cuts although it may be difficult or impossible to implement efficiently. It begins by
finding a minimum cut Cyp and its weight w(Cp). Then, the algorithm calls the procedure
ENUMERATE which attempts to find a new minimum cut by processing the edges of
originally identified cut such that the edges are forced into (included in) or out of
(excluded from) any new near-min cuts. For example, let Cy = {e}, €2, ..., e} be the

edges of the initial minimum cut. Based on this cut, C,(G) can be partitioned as
C.(G) =[C.(G)N(eN]VI[C.(G)nein(e)] V[C (G)Nnernexn (e
LUIC. (G netnern...nep 1N ()] VIC (G) e N...N e,
where C,(G)N e; N ez N... ex-1 N (ey) is interpreted to mean all near-min cuts

containing e; through e, but not ey. The cuts in this partition, except for the unique cut
of the last term which has already been found as Cp, are enumerated by calling

ENUMERATE recursively with the argument sets E' and E-, where E* denotes the set of

11

Algorithm A1l
INPUT: A directed network G = (V, E), s, t, w and €.
OUTPUT: All minimal s-7 cuts C such that w(C) < (1 + &) X w(Cy)
where Cp is a minimum weight s-f cut of G.
begin

1 Find a min cut Cp in G and let Wyy < w(Co);
2 Wiax < (1+8) X Wy ;
3 E'@; /* set of edges to be included */
4 E < @; /* set of edges to be excluded */
5 ENUMERATE (G, s, t,w, E*, E*, Wyax) ;

end

Procedure ENUMERATE (G, s, t,w, E*, E~, Waax)

begin
6 if Gacut C’ suchthat E*c C” and E"N C'=0)
7 then let C, « C; and Wygw < w(C,) where C; is amin
cut satisfying the conditions for C’;
8 else return;
9 if (Wyew > Wiyax) then return;

10 print (Wyew, C.);
11 for(eachedgeee {C,\ E*})

12 E « E ule};
13 ENUMERATE (G, s, t,w, E*, E™, Wyax);
14 E "« E"\{e};
15 E'« E*u/{el;
endfor
16 return;
end

Figure 1. Algorithm Al: A generic partitioning algorithm for enumerating all near-
minimum s-f cuts with a weight no greater than 1 + € times the minimum cut weight.

12

edges to be included and E~ denotes the set of edges to be excluded. (This essentially
results in calling ENUMERATE with {(e1)}, {e1, (e2)}, {e1, e2, (€3)},....{e1, €2, ..., (&)}
for the just-identified cut {ey, s, ..., ex}, Where, as above, edges in parentheses are forced
out of possible solutions while the others are forced in.) The procedure calls itself
recursively for every “unforced edge” of the locally minimium cut that is identified
within each call to ENUMERATE, unless it is determined that no acceptable cuts remain

and the algorithm must backtrack.

e, 1

Figure 2. Sample Graph. Numbers represent edge weights.

To illustrate how the enumeration works, consider the enumeration tree (which is
an instance of a rooted tree) given in Figure 3, which corresponds to solving ANMCP-st
on the graph of Figure 2. The algorithm first finds a minimum cut, {e, es, eg} at the root
node at level O, then recursively partitions the solution space via {(e2)}, {e2, (es)} and
{ea, e4, (eg)}. Once an edge of a cut at some node k has been processed, then it will never
be processed again at any descendant node of k, because its status as “included” or
“excluded* with respect to the current cut has been fixed at node k. The branches with

{(e2)}, {e2, (es)} and {e,, €4, (eg)} correspond to searches for a new minimum cut by

13

processing the edges as described. If a search is successful, it leads to a productive node
where the edges of a new cut, whose status has not been fixed, are processed. Otherwise,
the search leads directly to a terminal node, along an unproductive branch, where the
. algorithm backtracks. The correctness of this partitioning scheme follows from the fact
that w(Co) is a monotonic, non-decreasing function of edge weights in G and the
partitioning is based on a straightforward inclusion-exclusion technique. The actual

implementation of the algorithm could be difficult, and efficiency poor, because edge

inclusion may not be so simple to ensure (although exclusion is).

(Level 0)

(Level 1)

ese;eg (Level 2)

® (Level 3)

Figure 3. Enumeration Tree for the Graph of Figure 2. The enumeration scheme is
represented from top to bottom and right to left. Each black node corresponds to a cut
(edges given in bold next to the node) whose weight is no larger than 1+€ = 1+0.4 times
the min-cut weight, i.e., Wyux = | (1+0.4)x3] = 4. Numbers in parentheses represent the
number of the edge excluded from a cut; whereas other numbers represents edges to be
included. White nodes are terminal nodes where the algorithm backtracks. The
branches arriving into a terminal node are called “unproductive branches.”

14

We next present a “relaxed” version of Algorithm Al, denoted “Algorithm A2,”

which may waste time working with non-minimal cuts: It partitions the space of minimal

and non-minimal cuts but only prints out the minimal cuts. Our final algorithm,

Algorithm B (Figure 5), closely mimics Algorithm A2 (Figure 4), although Algorithm B

need not enumerate all near-min, non-minimal cuts.

Algorithm A2
INPUT: A directed network G = (V, E), s, t, wand €
OUTPUT: All minimal s-# cuts C such that w(C) < (1 + €) X w(Cp)
where Cp is a minimum weight s-7 cut of G.
begin
Same as Algorithm A1l;
end

Procedure ENUMERATE (G, s, t,w, E*, E~, Wayax)
begin

6 if (3 a minimal or non-minimal cut C” s.t. E*c C” and E"N C'=0)

7 then let C, < C, and Wygw < w(C,) where Cj, is a min-weight
minimal or non-minimal cut satisfying the conditions for C”;

8 else return;

9 if (WNEW > WMA X) then return;
10 if (C, is minimal) then print (Wxew, C,);

11 for(eachedgeee {C, \ E"})

12 E « E U {e};
13 ENUMERATE (G, s, t,w, E*, E~, Wyax);
14 E « E"\{e};
15 E*« E"U {e};
endfor
16 return;
end

Figure 4. Algorithm A2: A “relaxed” version of Algorithm Al.

15

B. AN IMPLEMENTABLE ALGORITHM

Algorithm B, given in Figure 5, implements a variant of Algorithm A2, which
may or may not produce non-minimal cuts. We quasi-exclude an edge e = (u,v) from

possible cuts at subsequent levels of the enumeration tree by simply setting w(e) = oo. (In

fact, we use a large number z instead of «, ie., z > Z w, , but for notational

ecE ¢’
convenience we use .) It is clear that every near-minimum cut in G should have a finite

weight, and thus e with w(e) = e cannot be contained in C.(G). This means that quasi-

exclusion implements true exclusion. The graph G with edge e quasi-excluded is denoted
G-—e.

We quasi-include e = (u,v) by adding two additional edges to G as follows: One
edge (s,u) connects the source to u, and the other edge (v,0), connects v to the sink; both
new edges have infinite weights. The graph G with edge e quasi-included is denoted G+
e. Tt is clear that if G + e contains a finite-weight cut, all such cuts must contain e = (&,v)
because, by construction, must be on the s side of such a cut, v must be on the # side of
such a cut, and that implies that e is a forward arc in the cut. Actually, we implement
quasi-inclusion in Algorithm B by temporarily treating u as an additional source and v as
an additional sink.

Figure 6 illustrates the quasi-inclusion and -exclusion of edges. G + E" —E will

denote G with the set of edges E* quasi-included and the set of edges E™ quasi-excluded.

16

ALGORITHM B

INPUT: A directed network G = (V, E), s, t, wand €

OUTPUT: All minimal s-¢ cuts C in G such that w(C) < (1 + &) X w(Cy)
begin

1 [Waun, Co 1 ¢~ MAXFLOW (G, s, t, W);

2 Whax < (1 +&) X Wiy ;

3 E'« @, /* set of edges to be included */

4 E « @; /* set of edges to be excluded */

5 ENUMERATE (G, s, t,w, E*, E*, Wyax) ;
end

Procedure ENUMERATE (G, s, t,w, E*, E~, Wyax)

begin
6 w o« w;
7 for (each edge e=(u, v)in E7) w’(y, v) ¢ oo;
8 for (each edge e=(u, v) in E™)
9 add artificial edge (s, u) to G and let w’(s, u) < ;3
10 add artificial edge (v, £) to G and let w’(v, 1) ¢ o0

endfor
/* w’ is now interpreted to include artificial edges */
11 [Wyew, C,1 < MAXFLOW (G, s,t, W');
12 if (Wnew > Waax) then return;
13 if (C, is minimal) then print (Wnew, C,);
14 for (eachedgeee {C.\ E'})
15 E « E u{e};
16 ENUMERATE (G, s, t,w, E*, E~, Waax);
17 E <« E"\{e};
18 E"« E"uU {e);

19 endfor
20 return ;
end

Figure 5. Algorithm B: An approximate implementation of Algorithm A2.

17

(b)

Figure 6. Quasi-inclusion and -exclusion of an edge from a cut. (a) Edge es is
quasi-excluded from a cut by setting w(es)=cc. (b) Edge e, is quasi-included in a
cut by adding infinite weight edges (s,u) and (v,?) to the graph.

18

C. CORRECTNESS OF THE ALGORITHM

Algorithm A2 would correctly find all near-minimum minimal cuts if it were

partitioning the set of all minimal cuts in G along with some, rather than all, of the non-
minimal cuts. That is essentially what Algorithm B does. Algorithm B begins by finding
a minimum cut in G and determining Wyax using a max-flow algorithm, all in an
obviously correct manner. That is, the main routine of Algorithm B correctly implements
the main routine of Algorithm A2. Then, where Algorithm A2 finds a min cut, minimal
or non-minimal, that includes edges in E* and excludes edges in E~, Algorithm B solves a
max-flow problem and finds a min cut, minimal or non-minimal, in G + E* — E".
Algorithm B is clearly finite and will be correct as long as (a) the weight of the locally
minimum cut is monotonically non-decreasing, and (b) it correctly partitions the space of
all minimal and possibly some of the non-minimal cuts in G. We first show point (a).
Lemma 3.1 w(Cy) is monotonically non-decreasing for each call to ENUMERATE in
Algorithm B.
Proof: When ENUMERATE is called, the finite weight of one edge in G has been
increased to infinity, and some infinite-weight edges may have been added to G. Clearly,
this cannot decrease the maximum flow (which equals the minimum cut weight) in G and
thus w(Cp) is monotonically non-decreasing. m

Now, point (b) above will be satisfied if no non-minimal cuts are lost in the calls
to ENUMERATE and none are repeated. The following two lemmas suffice to prove this.
Lemma 3.2 Let C be a finite-weight set of edges in G and let E" and E~ be quasi-

inclusion and quasi-exclusion sets, respectively, produced while running Algorithm B.

19

Suppose that C W E* = E* and C N E =@. Then C is a minimal cut of G only if C is
also a finite-weight minimal cut of G+ E* —E".

Proof- So, we suppose that C is a minimal cut of G. The minimality of this cut is not
affected by the weight of any edge, so C is also minimal cut of G —E". C is also a cut of
(G-E)+ E =G —E + E" because the only way to stop this, while transforming
G —-E into G —E + E*, would be to add one or more edges from the s side of C to the ¢
side of C. But, quasi-inclusion of E* only adds edges between nodes on the same side of
the cut. So, C is definitelyacut G —E + E*. Is it a minimal cut? No pathsin G —E~
have been deleted by adding the edges associated with quasi-inclusion of E’ (to obtain
G -E +E' from G —E"). Thus, all edges of C must be deleted from (G —E™) + E =
G —E + E' in order to disconnect s from ¢ in that graph; this means that C is a minimal
cutin G — E- + E*. Finally, C must be a finite-weight minimal cut in G —E~ + E*
because it contains no infinite-weight edges. m

Lemma 3.3: Let C be a set of edges in G and let E and E~ be quasi-inclusion and quasi-
exclusion sets, respectively, produced while running Algorithm B. Suppose that
CAE #E or CnE #@. Then, Cis anot a finite-weight minimal cut of G+ E* —E .
Proof: From a previous argument, we know that quasi-exclusion properly impleménts
edge exclusion. Thus, C cannot be a finite-weight minimal cut of G + E" — E if some
edge of C has been excluded, i.e., if C N E # . Also from a previous argument, we
know that all finite-weight minimal cuts of G + E* must contain E”, i.e., C cannot be a

finite-weight minimal cut of G+ E* —E if CNE #E". m

20

Theorem 3.1 Algorithm B correctly solves ANMCP-st.

Proof: Lemmas 3.1 through 3.3 show that Algorithm B correctly partitions the set of
minimal cuts in G (along with, possibly, some non-minimal cuts): The partitioning
process never loses a minimal cut by Lemma 3.2. Also, the process never repeats a
minimal cut by Lemma 3.3 and the fact that the algorithm backtracks if the “min-weight
cut” has infinite weight. Lemma 3.1 shows that the weight of the locally minimum cut in
Algorithm B is monotonically non-decreasing and, therefore, the algorithm is finite and
cannot miss enumerating a minimal cut because certain cut weights are “skipped” due to

backtracking m

D. COMPLEXITY OF THE ALGORITHM
Algorithm B can be used to solve both AMCP-st and ANMCP-s-¢, depending on

the choice of €. We first give a complexity analysis for all min-cut enumeration, AMCP-

st.

1. Complexity Analysis of Minimum-Cut Enumeration

Consider the enumeration tree given in Figure 3. Every node in that tree is either
productive, and defines a new cut, or it is a terminal node and is immediately backtracked
from. Unfortunately, the quasi-inclusion technique might result in the identification of
one or more non-minimal cuts, i.e., some productive nodes might correspond to non-
minimal cuts. Fortunately, any non-minimal cut encountered while solving AMCP-st
cannot be productive and an efficient procedure results.

We know that the worst-case complexity of solving, from scratch, an initial max
flow problem on G = (V,E) is O(f(n,m)), where f(n,m)is a polynomial function of

n =1Vl and m = |El. At each non-root node of the enumeration tree, the local max flow is
21

obtained by attempting to perform flow augmentations starting with the feasible flow
from the parent node. (This will be shown to be correct later.) Each flow augmentation
requires O(m) work using breadth-first search in a standard fashion. It then turns out that
the total amount of work performed at each node is O(m) , because (a) if the first search
does not find a flow-augmenting path, a new min cut has been identified, and (b) if a
ﬂow-augmenfing path is found, the locally maximum flow is at least Wyyy + 1 and the
algorithm can backtrack immediately. (The algorithm must be modified slightly to do
this.) Now a non-minimal cut must have a weight of at least Wyun + 1, so no such cuts
correspond to productive nodes. Thus the number of productive nodes is 1C(G) 1.

Now, each productive node can generate at most n non-productive nodes
(assuming G has no parallel arcs), so the total number of nodes generated is bounded by
(n+ 1) IC,(G)]. As described above, the amount of work to generate each node except
the first is O(m), and the amount of work to generate the first node is O(f (n,m)), so we
have the following result.

Theorem 3.3. Algorithm B finds all minimum cuts (solves AMCP-st) in
O(f(n,m)+mn|Cy (G))) time. m

This shows that the time complexity of Algorithm B is polynomial in the number
of minimum cuts enumerated and the size of graph. Algorithm B is somewhat less
efficient for solving AMCP-st than are some other algorithms from the literature: The
algorithm of Picard and Queyranne (1980) solves ANMCP-st in

O(f (n,m)+(m+n)(1Cy(G)) time and the algorithm of Ball and Provan (1983) solves

the problem in O(nm+mlCy(G)l) time. Nevertheless, our algorithm has several

22

advantages in that (a) it is easy to implement, (b) empirically, it tends to run in

O(f (n,m)+m|C (G)l) time and, (c) it extends trivially to near-min cut enumeraﬁon,

i.e., to solving ANMCP-st.

2. Complexity Analysis of Near-Minimum Cut Enumeration

By the arguments of the preceding section, the number of productive nodes in
enumeration tree should be bounded by (n+1)(IC.(G)I+IC.L(G)l), where C.(G)
denotes the set of near-minimum, non-minimal cuts identified as productive nodes of
Algorithm B’s enumeration tree. The test for non-minimality, which utilizes a breadth-
first search, takes O(m) time at each node. The search for a local max flow might require
multiple flow augmentations and might be as hard as solving for a max flow from
scratch. Therefore, the work expended at every node is O(f(n,m)+m)=0(f(n,m)). If
we could backtrack whenever a non-minimal cut was identified, then we could say

IC.(G)I1< nIC.(G)| because no node could have more than n descendants and the

resulting complexity for the whole algorithm would be O(nf(n,m)|C_(G)l). In near-

minimum cut enumeration, however, non-minimal cuts are acceptable if their weight
does not exceed (1+€)Wyn, and empirical tests show that backtracking when a non-
minimal cut is encountered can result in the loss of some valid minimal cuts. Thus,
Algorithm B must ignore non-minimal cuts and continue until it can backtrack based on

cut weight. This results in a complexity of O(nf (n,m)(1C,(G)1+1C.(G)1)), which may
not be polynomial if IC2 (G) lis exponentially larger than!C,(G)1. Therefore, the worst-

case complexity of Algorithm B for near-minimum cut enumeration is not well

determined. We leave this complexity issue as a topic for future research.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

IV. COMPUTATIONAL RESULTS

In this chapter, we report computational experiments with Algorithm B to
demonstrate its correctness and efficiency for solving both AMCP-st and ANMCP-st.
We test Algorithm B on both weighted and unweighted grid graphs and on various
problem instances from the literature.

Algorithm B is written and compiled using the Java 1.2.2 (Sun Microsystems
1998) programming language. All tests are performed on a personal computer with a 733
MHz Pentium II processor and 128 MB of RAM, running under the Windows 98 SE

operating system.

A. IMPLEMENTATION DETAILS
1. Efficient Implementation of Algorithm B

Here, we discuss some improvements of Algorithm B that empirically yield a
more efficient algorithm for solving both AMCP-st and ANMCP-st.

The MAXFLOW routine of Algorithm B is implemented to solve an “incremental”
max flow prpblcm rather than solving for a max flow “from scratch.” This can be done
because the max flow F* in G is a feasible flow F in G + E' — E. Consider the
enumeration tree introduced in Chapter III, and let G and F,* be the modified graph and
its corresponding max flow value, respectively, at node k. Each max flow problem at ahy
descendant node of k is a relaxation (with respect to edge weights) of the max flow
problem at node k. Therefore, F/* in G;, at any immediate child of &, can be reoptimized
from Fy* in G, by using an augmenting-path algorithm. (See Ahuja et al., 1993, pp. 180-

25

184 for details.) A complete max flow problem is only solved at root r; the remaining
max flow problems at any node of the enumeration tree can be obtained by using F* of
parent nodes. In fact, it takes at most O(m) work at each node when solving AMCP-st,
because we need to attempt only a single flow augmentation before we find a new max
flow or discover that the local max flow is greater than Wysx which is equal to Wyyy in
AMCP-st. Unfortunately, for ANMCP-st, multiple flow augmentations might be needed
to re-optimize the flow and this might require as much work as solving a complete max
flow problem. In practice, much less work is required, however.

The test for the non-minimality of a cut C, identified in Algorithm B is

performed only while solving ANMCP-st. The algorithm checks for non-minimal cuts
right after the identification of each cut in MAXFLOW. It performs a (breadth-first)
search starting at s trying to reach as many vertices as possible without traversing any cut
edges and keeps track of the vertices that have been reached. Then, a similar search is
performed backward from 7. A cut is identified as minimal if for every edge

e = (uv) € C,, uis reached from s and v is reached from ¢. Otherwise, the cut is non-

minimal and the algorithm does not print it.

One other issue in efficient implementation is edge inclusion. In theory, we
quasi-include an edge (u,v) by adding infinite-weight edges (s,u) and (v,?) to the graph,
but in practice we simulate this by simply treating u as an additional source and v as an

additional sink.

The rest of the implementation is straightforward. We use forward and reverse

star representation as our data structure (Ahuja et al. 1993, pp. 35-38) and the shortest

26

flow-augmenting-path algorithm of Edmonds and Karp (1972) for solving max flow
problems.

2. Problem Generators

In our literature search, we have not seen any particular problem family designed
to generate instances for testing algorithms for AMCP-st and ANMCP-st, except for Grid
Graph Families (GGFs) (Curet 1999, Gibbons 2000). The problem generators, however,
for MCP, MCP-st (e.g., Levine 1997) and the max flow problems at DIMACS (The
Center for Discrete Mathematics and Theoretical Computer, DIMACS 1991) are easy to
modify for our purposes. Therefore, we use GGF problems and several problem classes
from Levine (1997) and DIMACS to test Algorithm B.

We code a GGF Generator (GGFGEN) in Java to generate grid graphs. The
width W of the graph, and its length L, determine the size of the generated graph. Other
parameters are € and g, where € determines the near-minimum weight criterion and g
indicates whether the graph is weighted (¢ = 1) or unweighted (g = 0). For both weighted
and unweighted graphs, the edges beginning and ending in s and ¢, respectively, have
infinite weights. Every grid vertex u (other than s and ¢) is connected to each adjacent
(vertically and horizontally, assuming it exists) vertex v with two directed edges, (u,v)
and (v,u). Edge weights are 1 in the unweighted case, and pseudo-random, uniformly
distributed integer weights in range [1,10] otherwise. GGFGEN produces a (connected)

directed graph with (WL+2) vertices and 2(W+(2WL-W-L)) edges. Figure 7 shows a grid

graph generated by GGFGEN with inputs W=3,L=4,g=0and any € 2 0.

27

Figure 7. An unweighted, directed grid graph generated by GGFGEN with inputs W= 3,
L=4,g=0and any £ > 0. Edges incident to s and ¢ have infinite weights. Other weights
are all 1. Bi-directional edges between u and v represent two directed edges, (u,v) and

(v,u).

We consider different weighted and unweighted instances of GGF with W = L
(GGF-square) and W << L (GGF-long) for unweighted graphs. Table 1 gives the data for

the generated problem graphs.

Problem Name W L € q

GGF-square 5,10,15,20,25,30, 5,10,15,20,25,30, 0.0, .05, 0.1
40,50,60,70,80,90 40,50,60,70,80,90 10, .15 ’

100,125,150,175,
GGF-long 25 200,225,250 0.0 0

Table 1. Problem groups for GGF. A W x L grid of vertices is generated and adjacent
vertices are connected by bi-directional, vertical and horizontal edges. For g = 0, the
graph is unweighted (all edge weights are 1), and for g = 1, the graph is weighted with
pseudo-random integer weights in the range [1,10].

28

We have also chosen two other generators from the literature, implemented in the
C language and available via Internet for research use. The first is the Double-Cycle
Generator (DBLCYCLEGEN) (Levine 1997). The single input parameter for
DBLCYCLEGEN is n, the number of verticess DBLCYCLEGEN generates two
interleaved cycles such that the outer cycle has n vertices with the edge weights of 1000
and 997, and the inner cycle connects every third vertex of the outer cycle with the edges
of weights 1 or 4. A minimum cut lies in the middle of the graph with a weight of 2000
and there are many near-min cuts of the weight 2006.

The second generator is the Acyclic Dense (AD) graph generator from DIMACS
(1991). AD takes » as its input parameter and generates a fully dense, directed acyclic
graph with n vertices and m = n (n—1)/2 edges. We replace the ps'eudo-randomly
generated edge weights in AD with unit weights to observe the behavior of our algorithm
on the underlying topologic structure.

Table 2 gives the generated problem types for DBLCYCLEGEN and AD.

Problem Name n €

DBLCYC-I

(Levine 1997) 500 0.00, 0.10, 1.25, 1.50, 1.75, 2.00
AD-I 50 0.10, 0.20, 0.30, 0.40,
(DIMACS 1991) . 0.50, 0.60, 0.70

Table 2. Problem types for DBLCYCLEGEN and AD. Graphs of type DBLCYC-I are
generated with DBLCYCLEGEN and have n = 500 vertices and m = 1000 edges on two,
interleaved, directed cycles. The outer cycle has edge weights of 1000 and 997, and the
inner one has weights of 1 and 4. The edges between the cycles are weighted so as to hide
a min-cut with a weight of 2000 in the middle of the graph. Graphs of type AD-I are
fully dense, directed acyclic graphs with n = 50 vertices and m = 1225 unweighted
edges.

29

B. THE EXPERIMENTS
Run times are specified as the total of the time (a) spent in MAXFLOW (MF

TIME) including the initial max flow at the root node, (b) the time for identifying and
searching for a new cut (ID TIME), and (c) the time for determining if the new cut is
minimal (CHECK TIME). All times are given in seconds. Graph input time is short, and
not reported.

1. Experiments on Unweighted Graphs

Table 3 presents run times of Algorithm B on GGF instances for solving AMCP-
st. It takes less than 1 second fof Algorithm B to identify all minimum cuts in grid
graphs with sizes up to 402 vertices and 1,560 edges. The number of calls to MAXFLOW
increases about linearly with n. Because no non-minimal cuts are enumerated, most of
the running time is spent identifying and searching for a new cut. Also, note that

CHECK TIME increases as graph size increases. This is due to the O(m) running time of

breadth-first search used to check for cut minimality.

Problem Ngn— Calls MF s CHECE(ID . TOTA%
Name %l |E} ICol | ICy(G)I mm.I to , TIME TIME TIME TIME
Cuts’ | MF (sec.) (sec.) (sec.) (sec.)

GGF10x10 102 380 10 9 0 92 0.05 0.00 0.05 0.10
GGF20x20 402 1560 | 20 19 0 382 0.00 0.05 0.00 0.05
GGF30x30 902 3540 | 30 29 0 872 0.00 0.00 0.05 0.05
GGF40x40 1602 6320 | 40 39 0| 1562 0.10 0.00 0.05 0.15
GGF50x50 2502 9900 | 50 49 0| 2452 0.11 0.00 0.17 0.28
GGF60x60 3602 | 14280 | 60 59 0| 3542 0.21 0.00 0.28 0.49
GGF70x70 4902 | 19460 | 70 69 0| 4832 0.48 0.05 1.56 2.09
GGF80x80 6402 | 25440 | 80 79 0] 6322 1.15 0.10 4.58 5.83
GGE25x100 | 2502 9800 | 25 99 0| 2477 0.00 0.12 0.05 0.17
GGF25x125 | 3127 | 12250 | 25 124 0| 3102 0.06 0.33 0.77 1.16
GGF25x150 | 3752 | 14700 | 25 149 0| 3727 0.06 0.61 2.30 2.97
GGF25x175 | 4377 | 17150 | 25 174 0] 4352 0.11 0.90 4.64 5.65
GGF25%x200 | 5002 | 19600 | 25 199 0| 4977 0.11 1.55 7.34 9.00
GGF25x225 | 5627 | 22050 | 25 224 0| 5602 0.11 1.88 10.97 12.96
GGF25x250 | 6252 | 24500 | 25 249 0| 6227 0.17 2.13 15.34 17.64

1 Non-Min. Cuts : Number of the non-minimal cuts enumerated.

2 Calls to MF : Number of calls to MAXFLOW .

3 MFTIME : Total amount of the time spent in MAXFLOW including the initial complete max flow problem.

4 CHECK TIME : Total time for determining the if each new cut is minimal.

5ID TIME : Total time for identifying and searching for a new cut.

6 TOTAL TIME : Total running time in seconds.

Table 3. Run times (in seconds) for Algorithm B solving AMCP-st on unweighted
instances of GGF-square and GGF-long graphs. No non-minimal cuts are enumerated
because the weight of a non-minimal cut is at least Wyyv + 1, and the algorithm
backtracks immediately if a cut with weight greater than Wyy is found. GGFWXL
denotes a GGF graph with a WXL grid of vertices.

Table 4 summarizes the results for ANMCP-st on GGF-square instances with

€ = 0.05, 0.10, and 0.15. Solution times are expected to increase as € increases, because

the number of cuts in any graph might be exponential in the size of the graph. The

algorithm is quite efficient for modest-size grid graphs with reasonable € values.

Compared with Gibbons’ results for near-minimum cut enumeration (Gibbons 2000), our

results indicate an exponential decrease in calls to MAXFLOW and run times.

31

Non- MF |CHECK 1D TOTAL

P;?blem wi | | |icilica| €6y | min. | €SP | TIME | TIME | TIME | TIME
ame MF

Cuts (sec.) (sec.) (sec.) (sec.)
€= 0.05
GGF5x5 | 27] 90 5] 5 4 0 2] 005] 000 005 _ 0.10
GGF10x10| 102] 380] 10| 10 o 0 92| 000, 000 006 0.06
GGF15x15 | 227] 870 15 15 4 0 212 000] 006|000 0.06
GGF20x20 | 402] 1560] 20| 21 703 0| _7906] 0.7 000 071 148
GGF25:25 | 6271 2450 25| 26/ 1128] 0] 15506] 162 015 _ 2.14| _ 391
GGF30:30] 902| 3540] 30| 31| 1653 0| 26856 3.92] 0.49] 755 _ 11.96
£=0.10
GGESx<s | 27] 90 5] 5 2] o 2] 005] 000 005 _ 0.10
GGF10x10| 102] 380] 10| 11 956] 0 956|000 006|005 _ 0.11
GGF1s<15| 2271 870/ 15| 16| 3306 0| _ 3306 0.23] 000 _ 027] _ 050
GGF20x20] 402| 1560 20| 22| 113090 0| 113090 9.11] 135 _ 9.63] 20.09
GGF25x25 | 627| 2450 25| 27| 274550] 0| 274550] 30.98] _ 3.83] _ 39.62| 74.43
GGF30x30 | 902] 3540 30| 33| 8911698] 378 8911698] 1553.89] 182.78] 2798.42] 4535.09
£=0.15
GGFSx5 | 27] 90| 5] 5 2] 0 22] 005 000 005 _ 0.10
GGF10x10| 102] 380] 10] 11| _ 956 _ 0 9s6] 005 005 _ 0.06 _ 0.16

GGF15x15| 227| 870| 15| 17 35905 0 35905 1.69 0.42 2.77 4.88
GGF20x20 | 402| 1560| 20| 23| 1202033 153 1202033| 102.92 13.70 98.70] 215.32
GGF25x25 | 627| 2450, 25| 28| 3621978| 253| 3621978 420.08 56.83] 496.38] 973.29
GGF30x30 | 902] 3540] 30| 34/13465371] 21843|113463496|18537.49| 2609.65|25248.65|46395.79

Table 4. Run times in seconds for ANMCP-st solutions of Algorithm B on unweighted
GGF-square instances with € = 0.05, 0.10, 0.15. As expected, the solution times increase
as € increases. For example, 8,911,698 near-min cuts together with 378 non-minimal cuts

are enumerated in 4,535.09 seconds in GGF30x30 for € = 0.10. For € = 0.15 , on the
same graph, 13,465,371 near-min cuts and 21,843 non-minimal cuts are enumerated in

46,395.79 seconds.

Table 5 presents results for unweighted AD graphs. Interestingly, Algorithm B
does not enumerate any non-minimal cuts even though € is relatively large in some

instances. Given our concern about enumerating non-minimal cuts, this invites further

investigation.

32

Non- Calls to MF CHECK ID TOTAL

€ ICol | 1Cd IC(G)I min. MF TIME TIME TIME TIME

Cuts (sec.) (sec.) (sec.) (sec.)
0.0 49 49 49 0 1275 0.21 0.00 0.11 0.32
0.10 49 53 544 0 13650 2.28 0.00 0.85 3.13
0.20 49 58 4063 0 101625 16.56 0.22 8.92 25.70
0.30 49 63 19798 0 495000 94.86 0.64 39.40 134.90
0.40 49 68 75893 0 1897375 388.38 3.96 150.61 542.95
0.50 49 73| 249270 0 6231800 1356.31 15.90 489.37 1861.58
0.60 49 78| 730603 0 18265125| 4077.99 42.87 1423.98 5544.84
0.70 49 83| 1962849 0 49071275| 11188.42 | 121.20| 3816.87| 15126.49

Table 5. Computational results on unweighted, acyclic dense (AD) graphs with various
threshold levels €. This is a fully dense graph with 50 vertices and 1225 edges. Although
the graph is fully dense, the number of non-minimal cuts enumerated for all values of € is
zero.

2. Experiments on Weighted Graphs

Here we use the GGF-square problems with edge weights pseudo-randomly
generated integers in the range [1,10]. Results for minimum and near-minimum cut

enumeration are summarized in Tables 6 and Table 7, respectively.

Non- Calls to MF |CHECK| ID |TOTAL
Problem Name | VI \E] Wiw | ICo(G)l | min. TIME | TIME | TIME | TIME

Cuts ME (sec.) (sec.) | (sec.) (sec.)
GGF5x5w 27 90 17 1 0 7 0.06 0.00 0.06 0.12
GGF10x10w 102 380 42 2 0 92 0.00 0.00 0.05 0.05
GGF15x15w 227 870 45 1 0 19 0.00 0.00 0.05 0.05
GGF20x20w 402 1560 69 1 0 32 0.06 0.00 0.06 0.12
GGF25x25w 627| 2450 87 1 0 33 0.00 0.00 0.05 0.05
GGF30x30w 902| 3540 108 6 0 217 0.05 0.06 0.16 0.27

Table 6. Computational results for minimum-cut enumeration (AMCP-st) on weighted,
GGF-square problems. As in the unweighted case, no non-minimal cut are encountered.
All minimum cuts are identified in less than one second for these instances.

33

Non- MF |CHECK| ID |TOTAL

Problem | 1 | 181 | Wiw| Wiger| IC(G)! | min. Calsto| TIME | TIME | TIME | TIME
Cuts (sec.) (sec.) (sec.) (sec.)
e = 0.05
GGFsxsw | 27] 90 17] 17 1 0 7T 005 000|005 _ 0.10
GGF10x10w | 102] 380] 42| 44 51 0 26| 000 000 005 005
GGF15x15w | 227| 870] 45| 47 3 0 43| 000 005 000 _ 005
GGF20:20w | 402] 1560] 69| 72| 20| 0] _ 308] 011 _ 000 _ 006] 0.17
GGE25x25w | 627] 2450 87| o1 3300 645 016 000 011 027
GGF30:30w | 902] 3540] 108| 113| _ 416] 0] 7221] 159] _ 0.17] _204] 3.80
£=0.10
GGFsxsw | 27] 90 17] 18 1 77006 000 006 0.2
GGF10x10w | 102] 380] 42| 46 1 78 005] 000 005 _ 0.10
GGF15x15w | 227| 870] 45| 49 6 75 000] 000 0.06] _ 0.06

GGF25x25w | 627} 2450, 87| 95 309 4263 051 0.11 0.69 1.31
GGF30x30w | 902 3540| 108] 118 8025 104836 25.60 1.85] 31.66] 59.11

0
0
0
GGF20x20w | 402} 1560 69| 75 116 0 1508 022 0.00 0.16] _ 0.38
0
0

£=0.15

GGF5x5w 27{ 90] 17| 19 1 0 7 0.05 0.00 0.05 0.10
GGF10x10w | 102{ 380 42| 48 22 0 161 0.00 0.06 0.00 0.06
GGF15x15w | 227 870] 45| 351 22 0 223 0.00 0.06 0.00 0.06
GGF20x20w | 402| 1560[69| 79 1031 0| 10744 1.54 0.06 0.88 248

GGF25x25w | 627| 2450 87| 100 3345 22| 35917 5.11 0.55 5.49 11.15
GGF30x30w | 902| 3540{ 108]| 124] 144511 0| 1503784] 348.56] 32.41] 466.98] 847.95

Table 7. Computational results for near-minimum cut enumeration (ANMCP-st) on
weighted GGF-square problems. Non-minimal cuts are only encountered GGF25x25w.

Finally, we test Algorithm B on the DBLCYC-I problems with € values ranging

from 0.0 to 2.0. These tests are the only problem types where Algorithm B generates
large numbers of non-minimal cuts compared to the number of near-minimum cuts. For

£ > 1.25, the ratio of the number of non-minimal cuts to the number of minimal cuts

increases dramatically; see Table 8.

34

Non-min. | Calls to ME | CHECK D TOTAL
€ Wiv | Waax | IC(G)! Cuts ME TIME | TIME | TIME TIME
(sec.) (sec.) (sec.) (sec.)
0.00 1000; 1000 2 0 10 0.00 0.00 0.06 0.06
0.10 1000 1100 499 0 1976 0.21 0.05 0.28 0.54
1.00 1000| 2000 511 8 2032 0.21 0.00 0.35 0.56
1.25 1000 2250 2479 237411 957178 96.73 21.32 89.80(207.85
1.50 1000| 2500 2479 237411 957178 93.71 22.19 92.82| 208.72
1.75 1000 2750 2479 237411 9571781 92.76 23.16 91.48 207.40
2.00 1000| 3000 2509 238041 959683 89.67 21.01 82.72 193 .40

Table 8. Computational results for near-minimum cut enumeration (ANMCP-st) on
weighted DBLCYC-I problems when n = 500 (and m = 1000). The number of the non-
minimal cuts increases dramatically with increases in €. For example, when € =2.00, i.e.,
Winax = (142.00)x 1000 = 3000, the number of non-minimal cuts is 238,041 whereas the
number of near-min cuts is only 2509.

Our results show that Algorithm B performs quite well on various types of graphs,
but that non-minimal cuts can slow computations when the threshold parameter €
becomes large. For dense acyclic graphs, Algorithm B does not enumerate any non-
minimal cuts, but for the “double-cycle graphs” DBLCYC-], the number of non-minimal
cuts can outnumber the minimal cuts by a huge margin, at least when € becomes large.
This behavior of the algorithm suggests that it does have polynomial complexity for
certain graph topologies, but not others. @We believe this issue merits further
investigation.

For large graphs where the time for flow augmentations dominates the overall

running time, use of a state-of-the-art max flow algorithm such as Goldberg and Rao

(1998) might reduce MAXFLOW time.

35

THIS PAGE INTENTIONALLY LEFT BLANK

36

V. CONCLUSIONS AND RECOMMEDATIONS

In this thesis, we have developed an algorithm for enumerating all near-minimum-
weight s-t cuts in a directed graph G = (V,E). The enumeration algorithm finds ‘a
minimum-weight cut in the input graph via a maximum flow algorithm and then
recursively partitions the space of possible solutions to the “near-min threshold level”
Wiax = (1+€)XWyn, where Wy is the weight of that minimum weight cut. Given a
minimum cut, the set of acceptable cuts is recursively partitioned by forcing inclusion
and exclusion of edges from subsequent cuts. An edge (u,v) is quasi-excluded by simply
setting its weight to the infinity and quasi-included by implicitly introducing two infinite-
weight edges in G, one extending from s to u and the other from v to z. The algorithm
solves a max flow min-cut problem for each modified graph that is obtained in the
enumeration tree.

We have implemented our algorithm using the following enhancements to
improve the efficiency: (1) The algorithm solves a complete max flow problem at the
beginning (at the root node of enumeration tree) but solves only an “incremental” max
flow problem at the all other nodes (the max flow at a parent node is feasible for all
descendants and can easily be re-optimized), and (2) quasi-inclusion of an edge (u,v) is
simulated by treating u as an additional source and v as an additional sink.

Unfortunately, our quasi-inclusion technique sometimes leads to the enumeration
of non-minimal cuts together with the minimal cuts. Non-minimal cuts are easily

identified (and ignored), but they can increase the computational workload and stop us

37

from deriving a polynomial-time bound for the worst-case complexity of the algorithm.

We do obtain, however, a polynomial bound of O(f(n,m)+nm|C_(G)I) for minimum-

cut enumeration (which is the same as near-minimum cut enumeration but with € = 0).
Computational results for € > 0 show that the algorithm is empirically efficient for

modest-sized problems with modest values for €. For example, in an unweighted grid
graph with 402 vertices and 1,560 edges, (a) all 19 minimum cuts can be enumerated in
0.05 seconds (on a 733 MHz Pentium IIT personal computer), (b) it takes 0.77 seconds to
enumerate all 703 near-minimum cuts when € = 0.05, and (c) it takes only 20.09 seconds
to enumerate all 113,090 near-minimum cuts when € = 0.10. However, in another
unweighted graph with 102 vertices and 380 edges, and € = 0.50, the algorithm
enumerates 134,705 near-min cuts together with 4,474 non-minimal cuts in 601.2
seconds. For € = 0.90, on the same graph, 7,811,043 near-min cuts and 1,941,792 non-
minimal cuts are obtained in 2,303.5 seconds. The running times and the number of non-
minimal cuts increase significantly for relatively large values of €.

Although Algorithm B appears to be quite efficient in practice, more work might
improve the quasi-inclusion technique or develop another technique for edge inclusion.
If “true edge inclusion” (as opposed to quasi-inclusion) can be efficiently implemented,
this should yield a provably polynomial-time algorithm for near-minimum cut
enumeration.

If the current quasi-inclusion technique is retained, another approach might be
used to avoid enumerating non-minimal cuts. In particular, edges that cannot occur in

any minimal cut given those that are already included can be identified and marked as

38

“forbidden for inclusion.” This means that they can be given an infinite weight and
excluded because they are not allowed to appear in any minimal cut given the current
inclusions. An edge (u,v) can be forbidden from inclusion if every (s-u) or (v-f) path
contains at Jeast one such included edge.

Another approach to avoid non-minimal cuts might be to take the advantage of
max flow min-cut duality and corresponding linear programming (LP) techniques. This
might be fruitful because our algorithm enumerates some of the near-minimum-cost
bases in the dual of the maximum-flow LP. Although a minimal cut might correspond to
more than one basis, a non-minimal cut certainly should be indicated by the absence of a
basis. Use of linear algebra (linear independence or dependence of basic variables) to
check the corresponding bases during the enumeration might lead to a new technique to
eliminate non-minimal cuts.

Finally, it would be interesting to see if the enumeration algorithm, as it exists
now, will enumerate only minimal cuts for certain types of graph topologies, e.g.,
undirected s-¢ planar graphs. Using the dual of a planar graph and shortest-path
techniques, it is possible to enumerate near-min cuts in an undirected s-z planar graph in
polynomial time per cut. Thus, it is natural to wonder if our algorithm can also

enumerate such cuts efficiently.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

LIST OF REFERENCES

Ahmad, S. H., 1990, “Enumeration of Minimal Cutsets of an Undirected Graph,”
Microelectron. Reliab., Vol. 30, pp. 23-26. '

Ball, M. O., and Provan, J. S., 1983, “Calculating Bounds on Reachability and
Connectedness in Stochastic Networks,” Networks, Vol. 13, pp. 253-278.

Boyle, M. R., 1998, “Partial-Enumeration For Planar Network Interdiction Problems,”
Master’s Thesis, Operations Research Department, Naval Postgraduate School,
Monterey, California, March.

Colbourn, C. J., 1987, The Combinatorics of Network Reliability, Oxford University
Press.

Curet, N. D., 1999, “An Efficient Network Flow Code for Finding All Minimum Cost s-¢
Cutsets,” Working Paper, U.S. Department of Defense, Fort Meade, Maryland.

DIMACS, 1991, The First DIMACS International Algorithm Implementation Challenge,
Rutgers University, New Brunswick, New Jersey. (Available via anonymous ftp from
dimacs.rutger.edu.) :

Edmonds, J. and Karp, R. M., 1972, “Theoretical Improvements in Algorithm Efficiency
for Network Flow Problems,” Journal of the ACM, Vol. 19, pp. 248-264.

Fard, N. S., and Lee, T. H., 1999, “Cutset Enumeration of Network Systems with Link
and Node Failures,” Reliab. Eng. System Safety, Vol. 65, pp. 141-146.

Ford, L. R., and Fulkerson, D. R., 1956, “Maximal Flow through a Network,” Canadian
Journal of Mathematics, Vol. 8, pp. 399-404.

Gibbons, M., 2000, “Enumerating Near-Minimum Cuts in a Network,” Master’s Thesis,
Operations Research Department, Naval Postgraduate School, Monterey, California,
June.

Goldberg, A. V., and Rao, S., 1998, “Beyond the Flow Decomposition Barrier,” Journal
of the ACM, Vol. 45, pp. 783-797.

Gusfield, D., and Naor, D., 1993, “Extracting Maximal Information About Sets of
Minimum Cuts,” Algorithmica, Vol. 10, pp. 64-89.

Kanevsky, A., 1993, “Finding All Minimum-Size Separating Vertex Sets in a Graph,”
Networks, Vol. 23, pp. 533-541.

41

Karger, D. R., 1999, “A Randomized Fully Polynomial Time Approximation Scheme for
the All-Terminal Network Reliablity Problem,” SIAM J. Computing, Vol. 29, pp. 492-

514.

Karger, D. R., 2000, “Minimum Cuts in Near-Linear Time,” Journal of ACM, Vol. 47,
pp. 46-76.

Karger, D. R., and Clifford S., 1996, “A New Approach to the Minimum Cut Problem,”
Journal of ACM, Vol. 43, pp. 601-640.

Levine, M. S., 1997, “Experimental Study of Minimum Cut Algorithms,” Master’s
Thesis, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, Massachusetts, May. (Available at
http://theory.lcs.mit.edu/~mslevine.)

Nagamochi, H., Ono, T., and Ibaraki, T., 1994, “Implementing an Efficient Minimum
Capacity Cut Algorithm,” Mathematical Programming, Vol 67, pp. 297-324.

Nagamochi, H., Nishimura, K., and Ibaraki, T., 1997, “Computing All Small Cuts in an
Undirected Network,” SAIM J. Discrete Math. Vol. 10, pp. 469-481.

Nahman, J. M., 1997, “Enumeration of Minimal Cuts of Modified Networks,”
Microelectron. Reliab., Vol. 37, pp. 483-485.

Patvardhan, C., Prasad, V. C. and Pyara, V. P, 1995, “Vertex Cutsets of Undirected
Graphs,” IEEE Trans. Reliab., Vol. 44, pp. 347-353.

Picard, J. C., and Queyranne, M., 1980, “On The Structure of All Minimum Cuts in a
Network and Applications,” Math. Programming Study, Vol. 13, pp. 8-16.

Picard, J. C., and Queyranne, M., 1982, “Selected Applications of Minimum Cuts in
Networks,” INFOR, Vol. 20, pp. 394-422.

Prasad, V. C., Sankar, V., and Rao, P., 1992, “Generation of Vertex and Edge Cutsets,”
Microelectron. Reliab., Vol. 32, pp. 1291-1310.

Provan, J. S., and Ball, M. O., 1983, “The Complexity of Counting Cuts and of
Computing The Probability That A Graph Is Connected,” SIAM J. Computing, Vol. 12,

pp. 777-788.

Provan, J. S., and Shier, D. R., 1996, “A Paradigm for Listing (s,7)-Cuts in Graphs,”
Algorithmica, Vol. 15, pp. 351-372.

Ramanathan, A., and Colbourn, C. J., 1987, “Counting Almost Minimum Cutsets with
Reliability Applications,” Mathematical Programming, Vol. 39, pp. 253-261.

42

Shier, D. R., and Whited, D. E., 1986, “Iterative Algorithms for Generating Minimal
Cutsets in Directed Graphs,” Networks, Vol. 16, pp. 133-147.

Sung, C. S., and Yoo, B. K., 1992, “Simple Enumeration of Minimal Cutsets Separating
2 Vertices in a Class of Undirected Planar Graphs,” IEEE Trans. Reliab., Vol. 41, pp. 63-
71.

Sun Microsystems Inc., 1998, Java Platform Version 1.2.2.

Tsukiyama, S., Shirakawa, I., Ozaki, H., and Ariyoshi, H,, 1980, “An Algorithm to
Enumerate All Cutsets of a Graph in Linear Time per Cutset,” Journal of ACM, Vol. 27,

pp. 619-632.

Ubel, A., and Bicker, R., 1982, “Determination of All Minimal Cut-Sets between a
Vertex Pair in an Undirected Graph,” IEEE Trans. Reliab., Vol. R-31, pp. 167-171.

Vazirani, V. V., and Yannakakis, M., 1992, “Suboptimal Cuts: Their Enumeration,
" Weight and Number,” Automata, Languages and Programming. 19th International
Colloquium Proceedings, Vol. 623 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 366-377.

Wood, R.K., 1993, “Deterministic Network Interdiction,” Mathematical and Computer
Modeling, Vol. 17, pp. 1-18.

43

THIS PAGE INTENTIONALLY LEFT BLANK

INITIAL DISTRIBUTION LIST

1. Defense Technical INfOrmation CENLET ... ccoovveeviieeeeieeeeerererereeeeeeertnrasesesasmeessssseesssenens
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

2. Dudley KNOX LIDIATYcovcveueuiriiiiininieiiiiet sttt ettt
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Professor R K. W00dcoovuiveiiieiciiiiiciiicie et
Department of Operations Research
Naval Postgraduate School, Code OR/Wd
Monterey, CA 93943

4. Professor C. W. RASIMUSSEINuuveeiiiirreeeeeiieeereeietreeeserseeeeeeseaeeessossanseessssssssniossrssssasassnes
Department of Mathematics
Naval Postgraduate School, Code MA/Ra
Monterey, CA 93943

5. Professor G. G. BIOWIL ..oocoeveeiiiieeeieeecttreeeeteeeeesesseaesesssresessssseneeessssensessssssnsseneassnsens
Department of Operations Research
Naval Postgraduate School, Code OR/Bw
Monterey, CA 93943

6. Av. Huseyin Celik (Ahmet BalCIoglu)coueoueiiiiiiiecce
Hukumet Cad. No. 39
Boyabat-Sinop 57200 TURKEY

7. Kara Kuvvetleri KOmutanligi.......ccoccoroeiviiiiiiiiiniiiciie et
Kutuphane
Bakanliklar, Ankara, TURKEY

8. Kara Harp Okulu KOmutanligi........ccceeemrieininiiniiiicccciiiitiinee
Kutuphane
Bakanliklar, Ankara, TURKEY

9. Bilkent Universitesi KUtUphanesi........cccoocieiuriiiiimniiiiieiee e
06533 Bilkent, Ankara, TURKEY

10. Orta Dogu Teknik Universitesi Kutuphanesi.........ccoooueineininiiniiiic
Balgat, Ankara, TURKEY

45

